

IMPACTS OF LEAN EXECUTION ON COMPREHENSIVE PERFORMANCE OF GLOBAL SUPPLY CHAIN

Praveen Shrivastava

Dr. Nagendra Sohani

Abstract

The complexity of products, frequently changing customer demands, and the augmented competition for new concepts all require significant changes to traditional supply chains. Lean Execution, which increases the effectiveness of the supply chain, brings about the necessary transformation. Lean Execution focuses on locating and eliminating waste throughout the supply chain. This paper is focused on lean Execution in traditional supply chains, which leads to in-depth knowledge of lean systems (LS), as well as barriers and pressing issues faced in the Execution of lean systems in the supply chain. The articles published in refereed journals from 1985 to 2022 are taken into consideration, and a big pool of articles is subject to structured content analysis in order to actualize the study objectives. Starting with the introduction, the paper is divided into six sections. In the second section, a theoretical framework is covered. The third section then discusses methodology. The fourth section presents a descriptive analysis of publications, which is followed by a conclusion in the fifth section, and finally the sixth section discusses the future scope.

Keywords: Lean Barriers, TPS, Lean Supply Chain, NVAs, Lean Systems, Lean Practices.

1. INTRODUCTION

To improve performance in the manufacturing sector lean is a renowned concept. A Lean System is defined as a group of techniques that work together to generate a high-quality, efficient system that produces finished goods that meet customer demand with little or no waste [1]. The supply chain (SC) is widely understood to be the integration of key business activities across industries. When Lean System is fused throughout the SC it transforms into a lean supply chain. Structured content analysis is used in the article which includes material collection, descriptive analysis, category selection, and material evaluation. The paper's major findings present the researcher's progression, limitations, conclusions, and scope for further research in this area.

2. THEORETICAL BACKGROUND

1. Supply Chain: The principle of SC is to obtain input from the organization's suppliers, add value, then deliver value-added output to customers [2]. Dynamic capabilities in SC make the organization easily go through market turbulences [3]. Downstream complexity, internal complexity, and upstream complexity decrease the performance of SC [4]. Innovation, collaboration, supply networks, and evolving leadership impact SC effectiveness [5]. Effective implementation of SC practices places a strong emphasis on the training and retraining of the employees [6]. An SC is a network of activities of product development, procurement of materials, manufacturing, and distribution of goods to customers. Scopes of SC include suppliers, manufacturers, distributors, and end customers [7]. Industry 4.0 (I4.0) technologies are now used for the sustainability of supply chains [8].

2. Lean System: Lean Manufacturing often referred to as Lean system (LS), comes from the Toyota Production System

(TPS) [9]. The LS achieves the target through continuous improvement and waste elimination by sorting out Value Added activities (VA) from NVA [10]. The push system is driven by predetermined schedules, while the pull system is driven by customer requirements [11]. Major wastes considered in Lean System are Overproduction, Waiting, Transportation, Processing, Inventory, Motion and Defects [13].

Table 1. Principles of Lean System [12]

Principles	Objective of Principles
Standardization	To improve quality and efficiency.
Simplification & Specification	To reduce production lead time.
Teaching and Learning	Supervisors and managers act as a mentor in solving problems.
Socialization	An atmosphere of respect & common goals to improve efficiency.
Continuous Improvement	Done by the people to improve their own work systems.
Supplier-customer Relationship	To replenish the resources in the right quantity at right time to the customer.
Coordination & Communication	To smoothen the work process and increase efficiency.
Functional expertise & stability	To develop the set of skills work as a team from different departments
Striving for Ideal goal	To make improvements to reach the ideal goal.
Seed organizational Knowledge	Faith of the organization that the knowledge generated will pay off later.

2.1 Key Tools of Lean System: Kaizen, 5-S, Simplification/Standardization, Line Balancing, Statistical Process Control (SPC), Kanban (Pull), Group Technology, Single Minute Exchange of Dies (SMED), Visual Control, Focused Factories, Level Mixed Model (heijunka), Poka-Yoke and Total Productive Maintenance (TPM)[13].

2.2 Lean System practices: Cycle time reductions, JIT production, Process capability, TPM, Safety improvement programs, TQM, etc. [14]. Production Levelling [15]. Value stream mapping (VSM) [16]. One-Touch Exchange of Die (OTED) or Single Minute Exchange of Dies (SMED) [17]. One piece flow [18] are the Key lean practice followed in industries.

Table 2. Lean Techniques and Associated Practices, [19]

Lean Techniques	Lean Practices
Customer Involvement.	Gather information on customer requirement
Value Stream Mapping	Value chain analysis and end customer focus
JIT, TPM, small lot size, 5s, SMED	Waste reduction
JIT pull System, Kanaban	Production exact quantity and when needed
Suppliers Integration	Strong & effective Relationship
5-Whys, employee Involvement, VSM	Problem search
Employee participation, Training	Solving the related problems

2.3 Major Barriers of Lean Execution: Many companies adopted the LS by learning about the sustainable growth of Toyota and became very successful but other companies did not get that much success from lean Execution. Major barriers to implementing a LS are cultural issues and resistance to change which hinders continuous improvement [12, 20]. Companies implementing the LS have better flexibility and a good market share with waste minimization [22]. Application of lean elements as a group avoiding seven lean wastes instead of specific waste [23]. Tools and methods of LS are very significant in industries [24]. For Lean Production System (LPS) hybrid maturity model for assessment is more attractive than either lean or I4.0. [25]. Lean automation with human-machine interaction results in bio-mechatronic production systems [26]. The manufacturing sector has been consistently adding value to the global economy [27].

Table 3. Barriers to Lean Execution in industries [21]

Barriers in Lean Implementation	Small	Medium	Large
Investment Cost	Y		Y
Insufficient Senior Mgmt./supervisory/Workforce skills for lean Execution	Y	Y	Y

Insufficient management time	Y	Y	Y
Employee attitudes/resistance to change	Y	Y	Y
Inadequate external funding	Y		
Social and Cultural issues		Y	Y

The scarce attention to Lean soft practices is the undermining cause of failures in Lean and CI Programs [28]. Lean principles with simulation improve the productivity and efficiency of off-site manufacturing (OSM) [29].

3. EXECUTION OF LEAN IN SUPPLY CHAIN

A case study at Ranbaxy suggests measures of how and at what level Quality improvement is achieved after lean implementation [30]. Five elements Pull System, lean Production, Continuous Flow, High Inventory Turnover, and Shorter Lead Time considered while deploying lean practices to suppliers [31]. Lamming states that between firms in the LSC, cost transparency must be maintained [32]. In manufacturing company application of LS transformed the SC into more productive and efficient chain [33]. The worldwide interest in the lean Execution in logistics identified the challenges are freight cost, customers' requirements, forecast accuracy, labor costs, quality, and planning process [34]. The automotive industries have a high level of lean Execution, followed by the electronics, information technology [35]. Approximate Time Frame for Lean transformation of an industry is five years [36]. A case study from the Ford Motor Company revealed that through Lean Execution in SC OEE, productivity, output quality was improved, cost fell, lowered inventory and its cost and lead times shortened [37].

Table 4. Comparison of LSC with CSC model [41]

Features	LSC Model	CSC Model
Number & structure	Fewer, clustered	Many; vertical
Procurement personnel	Limited	Large
Outsourcing	Strategic	Cost-based
Selection criteria	Performance	Lowest price
Contract length	Long term	Short-term
Pricing practices	Target costing	Competitive bids
Quality	Designed in	Inspection-intensive
Delivery	Smaller quantities –JIT	Large quantities
Inventory buffers	Minimized, eliminated	Large
Communication	Extensive, multi-level	Limited, task-related
Information flow	Collaborative, two-way	Directive, one-way
Role in development	Substantial	Limited

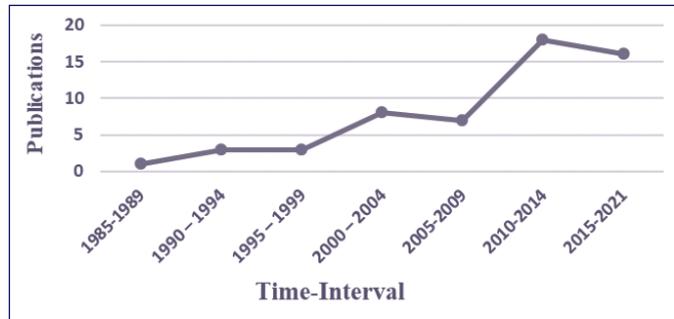
Production flexibility	High	Low
Technology sharing	Extensive	,Very limited
Dedicated investments	Substantial	Minimum required
Mutual commitment	High	Very limited
Governance	Self-governing	Market driven
Future expectations	Considerable	No guarantee

By Lean Execution in SC, Automotive Electronics Group could minimize lost man-days by 81%, slashed capital expenditures by 70 %, and time of raw materials movement reduced by 61%. Besides overall lead time (LT) reduced severely from 30 to 18 days which resulted in 12 days of value-added time [38]. Manufacturing firms in the Kingdom of Saudi Arabia (KSA) enhanced productivity through supplier and customer relationships, cost reduction, and waste elimination [39]. “Tesco” became the globe’s second-biggest retailer and raised its profits above £1.4 billion by Execution of LS in SC [40]. A difference of almost 2:1 was found in productivity between car assembly plants in Europe and those in Japan because of the successful Lean Execution in SC [42]. The LS achieve quick response and reduced lead times within the existing SC of textiles and apparel industry [43]. A case study on an automotive SC suggests that lean tools like just-in-sequence production, use of reusable containers, and racks are the main factors that make SCs more efficient [44]. The next step in achieving superior performance is creating a lean enterprise by linking individual breakthroughs up and down the value chain [45]. The term “lean supply” was coined by combining lean production with supplier and customer collaboration. [46]. LSS can support DT in boosting value throughout supply chains and generating rise-wide benefits [47]. The incorporation of lean principles and practices into SCM has culminated in differentiated results along the SC [48].

Methodology

Distinguished research methods include conceptual, modelling, case study, and survey are used in industries [49]. Research methods can be sub-classified into theoretical, qualitative, empirical, and quantitative research. While considering LSC, the most widely used research method is a case study and it is followed by survey and conceptual approaches [50]. Content analysis for this paper is done by a four-step process model which includes Materials gathering, descriptive analysis, category identification, and material evaluation. To achieve this purpose, papers published from 1985 to 2022 that discussed lean Execution in the SC are taken into account and Emerald, Elsevier, Scopus, Springer link, Google Scholar, Taylor & Francis, and other refereed journals are searched for achieving the goal. keywords used for the search include SC, lean principles, lean tools, lean practices, Lean System, lean enterprise, lean Execution in SC, etc. The preliminary search using keywords resulted ensued more than 500 hits. The number of articles was considerably decreased after limiting the initial search to articles with research domains. The same process

was reiterated for different databases and keywords. Scanning of abstracts, introductions, and body contents of the articles provided additional screening. A total no. of 56 articles were finally selected for the research study. The descriptive analysis includes the examination of basic descriptive characteristics of the selected articles. At the category identification stage, a Decision on categories and dimensions was taken to structure the gathered material. Category identification is followed by material evaluation, which involved the study and categorization of gathered material according to the selected structural categories and dimensions. The basic descriptive characteristics of the papers include the Publication year, Authors’ Vision on Lean Execution in Supply Chain, distribution across journals, distribution across Research domains, distribution across time intervals, and distribution across industry types.


4. DESCRIPTIVE ANALYSIS

4.1. Authors’ Vision on Lean Execution in Supply Chain: Authors of the reviewed articles perceived major lean principles for the successful Execution of LS in SC which are- Identify from the value end, Map value to expose and waste elimination, establish flow, Let the customer pull products, and Endeavor for perfection. They perceived Lean techniques include Customer Involvement, Value Stream Mapping, JIT, TPM, small lot size, SMED, cellular manufacturing, Supplier integration, pull System, Kanban, 5 Whys, employee Involvement, and Training [51]. The manufacturing line’s reliability is increased by using a lean strategy of working with a small number of suppliers on a long-term contract, which lowers overall costs [52]. To reap the utmost benefit of lean implementation, the focal organization should focus on supplier’s and distributor’s activities also along with internal activities [53].

4.2. Dispersion of Articles Across Time Interval: Published papers during the years 1985-2022 are considered for dispersion in terms of time. The contemporary Lean Digital Supply Chain (LDSC) is used to describe how Industry 4.0 technologies are used effectively to reduce waste at every level of the supply chain in order to accomplish lean goals [54].

Table 5. Dispersion of Articles Across Time Interval

S.No.	Time Interval	Publications
1	1985-1989	1
2	1990 – 1994	3
3	1995 – 1999	3
4	2000 – 2004	8
5	2005-2009	7
6	2010-2014	18
7	2015-2022	16

Figure 1. Dispersion of Articles Across Time Interval

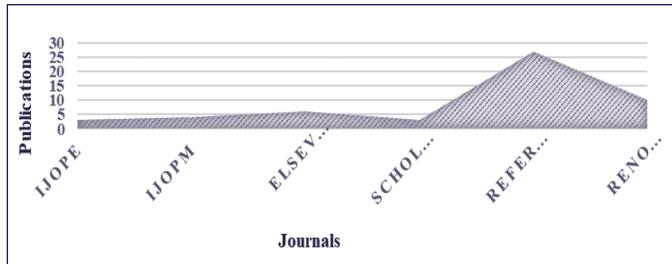
4.3. Dispersion of Articles across Research Domain: Articles selected for this study provide the in- depth know- how of lean Execution the SC. The articles selected for the study are majorly classified into three main categories and the table below is showing the no. of articles used for each stream.

Table 6. Dispersion of Articles Across Research Domains

S. No.	Research Domains	Publications
1	Supply chain (SC)	08
2	Lean System (LS)	22
3	LS Execution in SC	26

Figure 2. Dispersion of Articles Across Research Domains

4.4. Dispersion of Articles Across Journals: The publications were found in diverse scholastic journals i.e. Three papers were published in the International Journal of Production Economics (IJOPE), Five papers were published in the International Journal of Operations & Production Management, seven articles were found in Elsevier, Procedia, three were found in the Journal of Operations Management (JOPM) and so on, Detailed distribution is given in Table 7.


Table 7. Dispersion of Articles Across Journals

S. No.	Name of Journal	Publications
1	International journal of production economics	3
2	International Journal of Operations & Production Mgmt.	4
3	Journal of Operations Management	1
4	Elsevier, Procedia	6

5	Journal of Cleaner production	1
6	International Journal of Production Research	2
7	Journal of Manufacturing Technology Management	1
8	Production Planning & Control	1
9	Supply Chain Management: An International Journal	1
10	Applied Science	2
11	South African Journal of Industrial Engineering	1
12	Conference and Renowned Proceedings	2
13	International Journal of Lean Six Sigma	1
14	International Journal of Benchmarking	1
15	Resources, Conservation & Recycling	1
16	Int. J. Services and Operations Management	1
17	European Journal of Purchasing & Supply Management	1
18	J. Advan. Manag. Res.	1
19	Computers & Operations Research	1
20	Automation in Construction	1
21	International Journal of Purchasing and Materials Management	1
22	Journal of Asia Business Studies	1
23	Environmental Science and Pollution Research	1
24	Int. Journal of Management Research & Business Strategy	1
25	Int. Journal of Management Science and Engineering Mgmt.	1
26	Journal of Lean Manufacturing	1
27	J. Bus. Logistics	1
28	International Journal of Managing Value and Supply Chains	1
29	Journal of Management Development	1
30	Management and Production Engineering Review	1

31	Polish Journal of Management Studies	1
32	Transfer inovácií	1
33	Production	1
34	Renowned Books, Articles, and Ph.D. Dissertations	10

Figure 3. Dispersion of Articles Across Journals

5. CONCLUSION

The study endeavored to present lean Execution in SC in an elite way from available resources in diverse industrial sectors. In addition, this study provides acumen of previous research is done, recent work, research approach, trends, and authors' perspectives on lean Execution in SC. The distribution of papers across different sectors evidenced that lean does not have any boundaries in terms of industry sectors [55]. The study suggests that lean implementation must stretch to suppliers and distributors along with internal activities of the focal organization to utilize the lean implementation to its full potential [56]. In the same direction, the study examines the barriers to lean adoption, because knowledge of barriers is extremely important to evade letdowns and maintain the lean transformation. Ideally, an SC would be lean with no waste of time and inventory. Lean Execution in SC leads to Continuous improvements which assure significant growth in ROI [40]. The literature indicates that the lean concept is widely accepted in India but when a question on implementation in SC comes, it is merely the beginning of a trip and a long journey is still ahead. As such this study on the evaluation of lean implementation in the SC shall be of great aid to researchers for further research in the same direction as well as industries for implementation of lean in existing supply chains.

6. FUTURE RESEARCH

Based on findings from the evaluation of research papers, it is suggested that future studies on the topic explore performing more realistic quantitative research, such as surveys and simulations. The research method will assist the implementation of lean techniques for the betterment of SC and will support assertions regarding the unstoppable advantages of LSC. In addition, case studies based on expiatory evidence and predictive research employing mathematical modeling will contribute to harvesting more benefits out of lean implementation in SC. It is required to stretch out the research to types of industries that are entirely untouched by the researchers. Further organizations should be encouraged to embrace the full implementation of lean in their SCs to reap

full benefits by including other members of SC such as end customers and distributors. Finally, the analysis of case studies to compare the results of the evaluation along with industry practices will aid to streamline the research with the demands of industries.

REFERENCES

- [1] Van M A. (2013), *Lean practices-Lean-tools-performance*, Available <http://www.vanassen.info/wp-pdf/>
- [2] Chopra S, Meindl P (2013), *Supply Chain Management Strategy, Planning, and Operation*, Available http://baselogisticqueservices.com/chopra_meindl_SCM.pdf.
- [3] Masteika I. and Čepinskis J. (2015), *Dynamic Capabilities in Supply Chain Management*, 20th Int. Sci. Conf. (ICEM), *Procedia Soc Behav Sci*, 213, pp. 830- 835.
- [4] Bozarth C, Warsing D, Flynn B and Flynn E (2008), *The impact of supply chain complexity on manufacturing plant performance*, *Journal of Operations Management*, vol. 27(1), pp. 78-93.
- [5] Bhattacharya S. (2014), *Supply Chain Management in Indian Automotive Industry: Complexities, Challenges and Way Ahead*, *International journal of managing value supply chains*, vol.5(2), pp. 49-62.
- [6] Gowen C, Tallon W. (2003), *Enhancing supply chain practices through human resource management*, *Journal of Management Development*, Vol. 22(1), pp. 32-44.
- [7] Beamon B. (1998), *Supply chain design and analysis*, *International Journal of Production Economics* Vol. 55(3), pp. 281- 294.
- [8] Azevedo S, Pimentel C, Alves A and Matias J. (2021), *Support of Advanced Technologies in Supply Chain Processes and Sustainability Impact*, *Applied Science* vol. 11(7), pp. 3026.
- [9] Womack J. and Jones T. (1990), *The Machine That Changed the World*, Rawson Associates, NY.
- [10] Sundar R, Balaji N, Satheesh MK (2014), *A Review on Lean Manufacturing Implementation Techniques* 12th global congress on manufacturing and management (GCMM), *Procedia Engineering*, 1875 – 1885.
- [11] Dengiz B, Akbay K. (2000), *Computer simulation of a PCB production line: metamodeling approach*, *International Journal of Production Economics*, vol. 63(2), pp. 195-205.
- [12] Yadav O, Nepal B, Goel P, Jain R and Mohanty R. (2010), *Insights and learnings from lean manufacturing implementation practices*, *International Journal of Service and Operations Management*, vol. 6(4), pp. 398.
- [13] Swink M, Melnyk S, Cooper M and Hartley J (2014), *Managing operations across supply chain*, Available <http://docsshare04.docshare.tips/files/25664/256640645.pdf>.
- [14] Shah R, Chandrasekaran A and Linderman K (2008), *In pursuit of implementation patterns: the context of Lean and Six Sigma*, *International Journal of Production Research*, vol. 46(23), pp. 6679-6699.

[15] Agarwal A, Himanshu, Anup Kumar et.al. (2015), "The Evaluation and Implementation of Various Techniques in Lean Manufacturing," *International Journal of Industrial Engineering*, vol. 7(1), pp. 31-38.

[16] Rother M and Shook J (2003), "Learning to see: value stream mapping to add value and eliminate muda," *Lean Enterprise Institute*.

[17] Dillon AP and Shingo S. (1985), "A revolution in manufacturing: the SMED system," *CRC Press*.

[18] Li S and Rong Y. (2009), "The reliable design of one-piece flow production system using fuzzy ant colony optimization," *Computers & Operations Research*, Vol. 36(5), pp. 1656-1663.

[19] Ugochukwu P, Engström J and Langstrand J. (2012), "Lean in the supply chain: a literature review," *Management and production engineering review, Rev.*, vol. 3, pp. 87-96.

[20] Bhasin S. (2012), "Performance of Lean in large organisations," *Journal of Manufacturing Systems*, vol. 31(3), pp. 349-357.

[21] Chaple AP, Narkhede BE and Akarte MM (2014), "Status of implementation of lean manufacturing principles in the context of Indian industry: A literature review," 5th International & 26th All India Manufacturing, Design and Research Conference (AIMTDR), IIT Guwahati, Assam, India, pp. 567-1-6.

[22] Gupta S and Jain S. (2013), "A literature review of lean manufacturing," *International Journal of Management Science and Engineering Management*, vol. 8(4), pp. 241-249.

[23] Vamsi N, Jasti K and Kodali R. (2014), "Lean production: literature Technology review and trends," *International Journal of Production Research*, vol. 53(3), pp. 867-885.

[24] Rewers P, Trojanowska J and Chabowski P (2016), "Tools and methods of Lean Manufacturing-a literature review," *Proceedings of 7th Int. Tech. Conf., Technological Forum*, pp. 135-139.

[25] Kolla S, Minufekr M and Plapper P (2019), "Deriving essential components of lean and industry 4.0 assessment model for manufacturing SMEs," 52nd CIRP Conf. manufacuring sys, *Procedia CIRP*, vol. 81, 753-8.

[26] Malik AA, Bilberg A (2019), "Human centered Lean automation in assembly," 52nd CIRP Conference on manufacturing systems. *Procedia CIRP*, 81, pp. 659-64.

[27] Leong W, Teng S, How B, Ngan S, Lam H and Tan C (2019), "Adaptive analytical approach to lean and green operations," *Journal of Cleaner Production*, 235, pp. 190-209.

[28] Costa F, Lispi L, Staudacher A, Rossini M, Kundu K and Cifone F 2019, "How to foster Sustainable Continuous Improvement: A cause-effect relations map of Lean soft practices," *Operations Research Perspective*, 6:100091.

[29] Goh M and Goh Y. (2019), "Lean production theory-based simulation of modular construction processes," *Automation in Construction*, Vol. 101 pp. 227-244.

[30] Ali Khan A., Singh C. and Singh R. (2019), "Evaluating the strategic potential of AMT in Indian manufacturing industries," *International Journal of Management Concepts and Philosophy*, 12(1), 80.

[31] Wu YC. (2003), "Lean manufacturing: a perspective of lean suppliers," *International Journal of Operations and Production Management*, vol. 23(11), pp. 1349- 1376.

[32] Lamming R. (1996), "Squaring lean supply with supply chain management," *International Journal of Operations and Production Management* 16(2), pp. 183- 196.

[33] Nellore R, Chanaron JJ and Söderquist KE (2001), "Lean supply and price-based global sourcing—the interconnection," *European Journal of purchase and supply management*, vol. 7(2), pp. 101-10.

[34] Alvim SL and Oliveira OG (2020), "Lean Supply Chain Management: a lean approach applied to distribution—a literature review of the concepts, challenges and trends," *Journal of Lean Systems*, vol. 5(1), pp. 85-103.

[35] Panizzolo R, Garengo P, Sharma M and Gore A (2012), "Lean manufacturing in developing countries: evidence from Indian SMEs," *Production Planning Control*, vol. 23(10-11), pp. 769-788.

[36] Hines P, Holweg M and Rich N (2004), "Learning to evolve," *International Journal of Operations and Production Management*, vol. 24(10), pp. 994-1011.

[37] Wee HM and Wu S (2009), "Lean supply chain and its effect on product cost and quality: a case study on Ford Motor Company," *Supply Chain Management: International Journal*, vol. 14(5), pp.335-341.

[38] Fourie CJ and Umeh NE (2017), "Application of lean tools in the supply chain of a maintenance environment," *South African Journal of Industrial Engineering*, vol. 28(1), pp. 176-89.

[39] Al-Tit A (2016), "The impact of lean supply chain on productivity of Saudi manufacturing firms in Al- Qassim region," *Polish Journal of Management Studies*, vol. 14(1), pp. 18-27.

[40] Evans B and Mason R. (2018), "The Lean Supply Managing the challenge at TESCO," *Kogan Page*.

[41] Kováč I.M. (2013), "Lean Supply Chain Management," *Transfer inovácií*, vol. 28, pp. 3-7.

[42] Kimani MW (2013), "Lean Supply Chain Management in Manufacturing Firms in Kenya" *Doctoral dissertation*, University of Nairobi.

[43] Bruce M, Daly L and Towers N (2004), "Lean or agile: a solution for supply chain management in the textiles and clothing industry," *International Journal of Operations and Production Management*, vol. 24(2), pp. 151-170.

[44] Carvalho H, Govindan K, Azevedo S G and Machado V C (2017), "Modelling green and lean supply chains: An eco- efficiency perspective," *Resources. Conservation and Recycling*, vol. 120, pp. 75-87.

[45] Womack J. P. & Jones D. T(1994), "From Lean Production

to the Lean Enterprise," *Harvard Business Review*, pp. 93–103.

[46] Farmer D (1994), "Beyond Partnership: Strategies for Innovation and Lean Supply," *International Journal of Purchase and Materials Management*, vol. 30(2), pp. 58–60.

[47] Tay H.L. and Loh H.S. (2022), "Digital transformations and supply chain management: a Lean Six Sigma perspective," *Journal of Asia Business Studies*, vol. 16(2), pp. 340–353.

[48] Tortorella G L, Giglio R and Limon-Romero J (2018), "Supply chain performance: How lean practices efficiently drive improvements," *Journal of Manufacturing Technology and Management*.

[49] Kotzab H, Seuring S, Müller M and Reiner G (2006), "Research methodologies in supply chain management," *Springer Science & Business Media, Heidelberg New York*.

[50] Ellram LM (1996), "The use of the case study method in logistics research," *Journal of Business Logistics*, vol. 17(2), pp. 93–138.

[51] Womack J P and Jones D T (1996), "Beyond Toyota: How to root out waste and pursue perfection," *Harvard business review*, 40–58.

[52] Darvazeh S S, Mooseloo F. M., Vandchali H. R., Tomaskova H. and Tirkolaee E. B. (2022), "An integrated multi-criteria decision-making approach to optimize the number of leagile-sustainable suppliers in supply chains," *Environmental Science and Pollution Research*, pp. 1–23.

[53] Yin R.K. (2009), "Case study research Design and methods" 3rd edition, Thousand Oaks, CA, Sage.

[54] Mahdavisharif M., Cagliano A.C. and Rafele C. (2022), "Investigating the Integration of Industry 4.0 and Lean Principles on Supply Chain: A Multi-Perspective Systematic Literature Review," *Applied Science*, 12, 586.

[55] Cudney E., Elrod C. (2011), "A comparative analysis of integrating lean concepts into supply chain management in manufacturing & service industries," *International Journal of Lean Six Sigma*, vol. 2(1), pp. 5–22.

[56] Mohan A. and Sharma S. (2003), "Lean approach: some insights," *Journal of Advanced Management Research*, vol. 1, pp. 48–55.

AUTHORS

Praveen Shrivastava, IET, DAVV, Indore – 452 017, (MP)
Email: pravshri@gmail.com

Dr. Nagendra Sohani, Associate Professor, Department of Mechanical Engineering, IET, DAVV, Indore – 452 017, (MP)

DISCLAIMER

(Forgery of Documents)

It has come to my notice that some agencies or individuals are publishing papers online under the title of "Industrial Engineering Journal" in a Clandestine way and are also issuing certificates of publication of papers with the forged signatures and stamp of the undersigned. This is to bring to the notice of all concerned that the Indian Institution of Industrial Engineering is the sole proprietor of IE Journal and does not issue/offer any certificate to authors for publishing his/her paper in the Industrial Engineering Journal. Also, Industrial Engineering Journal does not publish online papers. All are advised to be cautious of this unscrupulous practice. The IIIE National Headquarters or the undersigned do not take any responsibility for the fake publication and issue of the certificate.

Sd/-
Editor-in-chief
Industrial Engineering Journal
IIIE National Headquarters
Navi Mumbai